Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2306776121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709933

RESUMO

A high-fat diet (HFD) is a high-risk factor for the malignant progression of cancers through the disruption of the intestinal microbiota. However, the role of the HFD-related gut microbiota in cancer development remains unclear. This study found that obesity and obesity-related gut microbiota were associated with poor prognosis and advanced clinicopathological status in female patients with breast cancer. To investigate the impact of HFD-associated gut microbiota on cancer progression, we established various models, including HFD feeding, fecal microbiota transplantation, antibiotic feeding, and bacterial gavage, in tumor-bearing mice. HFD-related microbiota promotes cancer progression by generating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, the HFD microbiota released abundant leucine, which activated the mTORC1 signaling pathway in myeloid progenitors for PMN-MDSC differentiation. Clinically, the elevated leucine level in the peripheral blood induced by the HFD microbiota was correlated with abundant tumoral PMN-MDSC infiltration and poor clinical outcomes in female patients with breast cancer. These findings revealed that the "gut-bone marrow-tumor" axis is involved in HFD-mediated cancer progression and opens a broad avenue for anticancer therapeutic strategies by targeting the aberrant metabolism of the gut microbiota.


Assuntos
Neoplasias da Mama , Diferenciação Celular , Dieta Hiperlipídica , Progressão da Doença , Microbioma Gastrointestinal , Leucina , Células Supressoras Mieloides , Animais , Dieta Hiperlipídica/efeitos adversos , Leucina/metabolismo , Feminino , Humanos , Camundongos , Células Supressoras Mieloides/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/microbiologia , Neoplasias da Mama/metabolismo , Obesidade/microbiologia , Obesidade/metabolismo , Obesidade/patologia , Linhagem Celular Tumoral
2.
MedComm (2020) ; 5(4): e518, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38525111

RESUMO

Perineural invasion (PNI) leads to the poor prognosis of head and neck squamous cancer (HNSCC) patients, but the mechanism of PNI remains unclear. Dickkopf-1 (DKK1), a secretory protein in the Wnt signaling pathway, was found indeed upregulated in HNSCC cells and tissues. Higher expression of DKK1 was statistically relevant to T stage, N stage, PNI, and poor prognosis of HNSCC. DKK1 overexpression enhanced the migration abilities of cancer cells. Moreover, DKK1-overexpressing cancer cells promoted cancer cells invasion of peripheral nerves in vitro and in vivo. Mechanistically, DKK1 could promote the PI3K-AKT signaling pathway. The migration abilities of neuroblastoma cells, which were enhanced by DKK1-overexpressing HNSCC cell lines, could be reversed by an inhibitor of Akt (MK2206). The association of DKK1 with PNI was also confirmed in HNSCC samples. Variables, including T stage, N stage, DKK1 expression, and PNI, were used to establish a nomogram to predict the survival probability and disease-free probability at 3 and 5 years. In summary, DKK1 can promote the PI3K-AKT signaling pathway in tumor cells and then could induce neuritogenesis and facilitate PNI. MK2206 may be a potential therapeutic target drug for HNSCC patients with PNI.

3.
BMC Cancer ; 24(1): 230, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373930

RESUMO

BACKGROUND: This study aimed to identify metabolic subtypes in ESCA, explore their relationship with immune landscapes, and establish a metabolic index for accurate prognosis assessment. METHODS: Clinical, SNP, and RNA-seq data were collected from 80 ESCA patients from the TCGA database and RNA-seq data from the GSE19417 dataset. Metabolic genes associated with overall survival (OS) and progression-free survival (PFS) were selected, and k-means clustering was performed. Immune-related pathways, immune infiltration, and response to immunotherapy were predicted using bioinformatic algorithms. Weighted gene co-expression network analysis (WGCNA) was conducted to identify metabolic genes associated with co-expression modules. Lastly, cell culture and functional analysis were performed using patient tissue samples and ESCA cell lines to verify the identified genes and their roles. RESULTS: Molecular subtypes were identified based on the expression profiles of metabolic genes, and univariate survival analysis revealed 163 metabolic genes associated with ESCA prognosis. Consensus clustering analysis classified ESCA samples into three distinct subtypes, with MC1 showing the poorest prognosis and MC3 having the best prognosis. The subtypes also exhibited significant differences in immune cell infiltration, with MC3 showing the highest scores. Additionally, the MC3 subtype demonstrated the poorest response to immunotherapy, while the MC1 subtype was the most sensitive. WGCNA analysis identified gene modules associated with the metabolic index, with SLC5A1, NT5DC4, and MTHFD2 emerging as prognostic markers. Gene and protein expression analysis validated the upregulation of MTHFD2 in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic target for ESCA. CONCLUSION: The established metabolic index and identified metabolic genes offer potential for prognostic assessment and personalized therapeutic interventions for ESCA, underscoring the importance of targeting metabolism-immune interactions in ESCA. MTHFD2 promotes the progression of ESCA and may be a potential therapeutic target for ESCA.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Prognóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Imunoterapia , Regulação para Cima
4.
Nat Microbiol ; 9(2): 346-358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225460

RESUMO

Antibiotic tolerance is the ability of a susceptible population to survive high doses of cidal drugs and has been shown to compromise therapeutic outcomes in bacterial infections. In comparison, whether fungicide tolerance can be induced by host-derived factors during fungal diseases remains largely unknown. Here, through a systematic evaluation of metabolite-drug-fungal interactions in the leading fungal meningitis pathogen, Cryptococcus neoformans, we found that brain glucose induces fungal tolerance to amphotericin B (AmB) in mouse brain tissue and patient cerebrospinal fluid via the fungal glucose repression activator Mig1. Mig1-mediated tolerance limits treatment efficacy for cryptococcal meningitis in mice via inhibiting the synthesis of ergosterol, the target of AmB, and promoting the production of inositolphosphorylceramide, which competes with AmB for ergosterol. Furthermore, AmB combined with an inhibitor of fungal-specific inositolphosphorylceramide synthase, aureobasidin A, shows better efficacy against cryptococcal meningitis in mice than do clinically recommended therapies.


Assuntos
Cryptococcus neoformans , Meningite Criptocócica , Humanos , Animais , Camundongos , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Antifúngicos/farmacologia , Encéfalo , Ergosterol/uso terapêutico
5.
Am J Emerg Med ; 78: 157-162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281376

RESUMO

BACKGROUND AND IMPORTANCE: Paroxysmal supraventricular tachycardia (PSVT) is an arrhythmia commonly seen in the emergency department. Both modified Valsalva maneuver (MVM) and intravenous adenosine are the first line treatment, of which the former has e lower success rate while the latter has a higher success rate but some risks and adverse effects. Given both of these reverse rhythms quickly, combining them may achieve a better effect. OBJECTIVE: The objective of this study is to evaluate the success rate and potential risk of combining the use of intravenous adenosine while patients were doing MVM as a treatment for paroxysmal supraventricular tachycardia(pSVT). DESIGN, SETTINGS AND PARTICIPANTS: We recruited patients with pSVT from 2017 to 2022, and randomly assigned them into 3 groups, MVM group, intravenous adenosine group, and combination therapy group, in which MVM was allowed to be performed twice, while intravenous adenosine was given in a titration manner to repeat three times, recorded the success rate and side effects in each group. MAIN RESULTS: The success rate of the MVM group, adenosine group, and combination group are 42.11%, 75.00 and 86.11%, respectively. The success rate of the adenosine group and combination group is significantly higher than the n MVSM group (p < 0.01, p < 0.001), while the success rate of the combination group is higher than the adenosine group, it has no significant difference (p = 0.340). In terms of safety, the longest RR durations (asystole period) are 1.61 s, 1.60s, and 2.27 s, there is a statistical difference among the three groups (p < 0.01) and between the adenosine and combination group (0.018). CONCLUSION: Therefore, we can conclude that combination therapy has a relatively high success rate and good safety profile, but the current study failed to show its superiority to adenosine.


Assuntos
Taquicardia Paroxística , Taquicardia Supraventricular , Taquicardia Ventricular , Humanos , Adenosina/uso terapêutico , Taquicardia Paroxística/tratamento farmacológico , Taquicardia Supraventricular/tratamento farmacológico , Taquicardia Supraventricular/induzido quimicamente , Taquicardia Ventricular/tratamento farmacológico , Manobra de Valsalva
6.
Eur J Pharmacol ; 960: 176177, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37931839

RESUMO

Cryptococcus neoformans, an opportunistic fungal pathogen, primarily infects immunodeficient patients frequently causing cryptococcal meningoencephalitis (CM). Increased intracranial pressure (ICP) is a serious complication responsible for increased morbidity and mortality in CM patients. Non-invasive pharmacological agents that mitigate ICP could be beneficial in treating CM patients. The objective of the study was to investigate the efficacy of acetazolamide (AZA), candesartan (CAN), and triciribine (TCBN), in combination with the antifungal fluconazole, on C. neoformans-induced endothelial, brain, and lung injury in an experimental mouse model of CM. Our study shows that C. neoformans increases the expression of brain endothelial cell (BEC) junction proteins Claudin-5 (Cldn5) and VE-Cadherin to induce pathological cell-barrier remodeling and gap formation associated with increased Akt and p38 MAPK activation. All three agents inhibited C. neoformans-induced endothelial gap formation, only CAN and TCBN significantly reduced C. neoformans-induced Cldn5 expression, and only TCBN was effective in inhibiting Akt and p38MAPK. Interestingly, although C. neoformans did not cause brain or lung edema in mice, it induced lung and brain injuries, which were significantly reversed by AZA, CAN, or TCBN. Our study provides novel insights into the direct effects of C. neoformans on BECs in vitro, and the potential benefits of using AZA, CAN, or TCBN in the management of CM patients.


Assuntos
Cryptococcus neoformans , Meningite Criptocócica , Meningoencefalite , Humanos , Animais , Camundongos , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Meningite Criptocócica/tratamento farmacológico , Meningite Criptocócica/microbiologia , Acetazolamida/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Meningoencefalite/tratamento farmacológico , Meningoencefalite/microbiologia , Meningoencefalite/patologia
7.
Mol Microbiol ; 120(5): 723-739, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37800599

RESUMO

DectiSomes are anti-infective drug-loaded liposomes targeted to pathogenic cells by pathogen receptors including the Dectins. We have previously used C-type lectin (CTL) pathogen receptors Dectin-1, Dectin-2, and DC-SIGN to target DectiSomes to the extracellular oligoglycans surrounding diverse pathogenic fungi and kill them. Dectin-3 (also known as MCL, CLEC4D) is a CTL pathogen receptor whose known cognate ligands are partly distinct from other CTLs. We expressed and purified a truncated Dectin-3 polypeptide (DEC3) comprised of its carbohydrate recognition domain and stalk region. We prepared amphotericin B (AmB)-loaded pegylated liposomes (AmB-LLs) and coated them with this isoform of Dectin-3 (DEC3-AmB-LLs), and we prepared control liposomes coated with bovine serum albumin (BSA-AmB-LLs). DEC3-AmB-LLs bound to the exopolysaccharide matrices of Candida albicans, Rhizopus delemar (formerly known as R. oryzae), and Cryptococcus neoformans from one to several orders of magnitude more strongly than untargeted AmB-LLs or BSA-AmB-LLs. The data from our quantitative fluorescent binding assays were standardized using a CellProfiler program, AreaPipe, that was developed for this purpose. Consistent with enhanced binding, DEC3-AmB-LLs inhibited and/or killed C. albicans and R. delemar more efficiently than control liposomes and significantly reduced the effective dose of AmB. In conclusion, Dectin-3 targeting has the potential to advance our goal of building pan-antifungal DectiSomes.


Assuntos
Antifúngicos , Criptococose , Humanos , Antifúngicos/farmacologia , Lipossomos/química , Lipossomos/farmacologia , Anfotericina B/farmacologia , Anfotericina B/química , Candida albicans
8.
Anal Sci ; 39(10): 1669-1679, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37697157

RESUMO

In this work, PtCo bimetallic nanoparticles supported on multi-walled carbon nanotubes (PtCo@MWCNTs) nanohybrid was prepared simply and used for the first time as a novel nanozyme in the colorimetric sensing of L-cysteine (L-Cys) and Cu2+. Due to its strong enzyme-like catalytic activity, the prepared PtCo@MWCNTs nanohybrid can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to form ox-TMB without H2O2. Interestingly, the oxidase-like active of PtCo@MWCNTs was effectively suppressed by L-Cys, which could reduce ox-TMB to colorless TMB and lead to a pronounced blue fading, and the absorbance at 652 nm gradually decreased with increasing L-Cys concentration. On the other hand, the nanozyme activity of PtCo@MWCNTs can be recovered due to the complexation between L-Cys and Cu2+. Therefore, a colorimetric method based on PtCo@MWCNTs nanozyme was established to detect L-Cys and Cu2+. The results show that the assay platform has simple, rapid, sensitive performance and good selectivity. The detection limits for L-Cys and Cu2+ are 0.041 µM and 0.056 µM, respectively, coupled with the linearities of 0.01 ~ 60.0 µM and 0.05 ~ 80.0 µM. The successful first application of PtCo bimetal-based nanozyme in colorimetric sensing herein opens a new direction for nanozyme and colorimetric analysis, showing great potential applications.


Assuntos
Nanopartículas , Nanotubos de Carbono , Colorimetria , Cobre , Cisteína , Peróxido de Hidrogênio , Íons
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1797-1802, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36476906

RESUMO

OBJECTIVE: To investigate the expression and clinical significance of soluble interleukin-2 receptor(sIL-2R) in patients with multiple myeloma(MM). METHODS: 54 newly diagnosed MM patients in the Second Affiliated Hospital of Fujian Medical University from February 2020 to December 2021 were selected as the observation group, and 60 healthy people in our hospital in the same period were selected as the control group. The expression levels of sIL-2R in the serum of the two groups were detected by enzyme-linked immunosorbent assay. The differences of sIL-2R expression level among different clinical parameter groups in MM patients were compared. The clinical parameters include:gender, age, ISS stage, hemoglobin, albumin, serum creatinine, lactate dehydrogenase and ß2-microglobulin, blood calcium, bone marrow plasma cell ratio and treatment response. The relationship between sIL-2R expression level and progression-free survival(PFS) and overall survival(OS) in MM patients were analyzed. RESULTS: The expression of serum SIL-2R in MM patients was significantly higher than that in healthy control group (P<0.05). The expression of sIL-2R in MM patients who did not achieve complete remission(CR) was significantly higher than those of CR patients (P=0.037). There was no significant difference in the expression of serum sIL-2R between the groups of different sex, age, ISS stage, hemoglobin concentration, albumin content, serum creatinine level, lactate dehydrogenase level, the content of ß2-microglobulin, the concentration of blood calcium, and the proportion of bone marrow plasma cells(P>0.05). The PFS of sIL-2R high expression group(15 months) was shorter than that of sIL-2R low expression group (22 months), which was significant difference (P=0.041). But there was no significant difference in OS between sIL-2R high expression group and sIL-2R low expression group (P=0.124). Univariate analysis results showed that the high expression of serum sIL-2R was associated with poor PFS in MM patients. Multivariate analysis results showed that the high expression of serum sIL-2R was still an independent adverse prognostic factor for PFS in MM patients, However, the expression of serum sIL-2R was not statistically significant in evaluating OS in MM patients by univariate and multivariate analysis. CONCLUSION: The expression of serum sIL-2R in MM patients was significantly higher than that in healthy people. Serum sIL-2R is an independent prognostic factor of PFS in MM patients.


Assuntos
Mieloma Múltiplo , Humanos , Cálcio , Relevância Clínica , Creatinina , Lactato Desidrogenases , Receptores de Interleucina-2
10.
Food Res Int ; 161: 111831, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192963

RESUMO

Cocoa tea (Camellia ptilophylla) is a non-conventional tea variety with low caffeine and high gallocatechin gallate (GCG). The anti-inflammatory activity of black cocoa tea and its underlying mechanisms remain virtually unknown. In this study, the chemical composition and anti-inflammatory activity of water extracts from black cocoa tea (BCWE) and Yunnan Daye tea (BYWE) were compared. Results showed that the dominant alkaloid in BCWE and BYWE were theobromine and caffeine, respectively. The contents of gallic acid, total catechins, and total polyphenols in BCWE were significantly higher than those in BYWE. For tea pigments, BYWE contained a little more total theaflavins and theabrownins than BCWE, while no significant difference was observed in thearubigins. Interestingly, a novel theaflavin synthesized from GCG and catechin was found in BCWE. In lipopolysaccharide-induced RAW264.7 cells, both BCWE and BYWE could inhibit the production of nitric oxide and prostaglandin E2 by down-regulating the expression levels of inducible nitric oxide synthase and cyclooxygenase-2. They also markedly reduced the release of tumor necrosis factor-α and interleukin-6 at a high dose. Additionally, BCWE exhibited stronger anti-inflammatory activity than BYWE. Finally, BCWE exerted anti-inflammatory effect by inhibiting the activation of mitogen-activated protein kinases, phosphatidylinositol-3-kinase/protein kinase B, and nuclear factor-kappa B signaling pathways. These findings suggest that black cocoa tea can be developed into a promising functional beverage with anti-inflammatory property.


Assuntos
Camellia , Catequina , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Cafeína , Camellia/química , Catequina/química , Catequina/farmacologia , China , Ciclo-Oxigenase 2 , Ácido Gálico , Interleucina-6 , Lipopolissacarídeos/farmacologia , Proteínas Quinases Ativadas por Mitógeno , Óxido Nítrico , Óxido Nítrico Sintase Tipo II , Fosfatidilinositóis , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prostaglandinas , Proteínas Proto-Oncogênicas c-akt , Chá/química , Teobromina , Fator de Necrose Tumoral alfa , Água
11.
Front Nutr ; 9: 987807, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082027

RESUMO

Selenium nanoparticles (SeNPs) have gained extensive attention for their excellent biological activity and low toxicity. However, SeNPs are extremely liable to aggregate into non-bioactive or gray elemental selenium, which limits their application in the biomedicine field. This study aimed to prepare stable SeNPs by using lentinan (LNT) as a template and evaluate its anti-colon cancer activity. The average particle diameter of obtained lentinan-selenium nanoparticles (LNT-SeNPs) was approximately 59 nm and presented zero-valent, amorphous, and spherical structures. The monodisperse SeNPs were stabilized by LNT through hydrogen bonding interactions. LNT-SeNPs solution remained highly stable at 4°C for at least 8 weeks. The stability of LNT-SeNPs solution sharply decreased under high temperature and strong acidic conditions. LNT-SeNPs showed no obvious cytotoxic effect on normal cells (IEC-6) but significantly inhibited the proliferation of five colon cancer cells (HCT-116, HT-29, Caco-2, SW620, and CT26). Among them, LNT-SeNPs exhibited the highest sensitivity toward HCT-116 cells with an IC50 value of 7.65 µM. Also, LNT-SeNPs displayed better cancer cell selectivity than sodium selenite and selenomethionine. Moreover, LNT-SeNPs promoted apoptosis of HCT-116 cells through activating mitochondria-mediated apoptotic pathway. Meanwhile, LNT-SeNPs induced cell cycle arrest at G0/G1 phase in HCT-116 cells via modulation of cell cycle regulatory proteins. The results of this study indicated that LNT-SeNPs possessed strong potential application in the treatment of colorectal cancer (CRC).

12.
Cancer Manag Res ; 14: 2871-2884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171861

RESUMO

Purpose: For better understanding of radiotherapy resistance and its potential mechanism. Methods: We established radioresistance cell lines of non-small cell lung cancer (NSCLC) followed by microarray analysis. 529 differentially expressed genes (DEGs) were then screened between radiation resistant cell lines compared with the sensitive cell lines. The biological functions and enrichment pathways of the above DEGs were identified using Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analyses. Gene Set Enrichment Analysis (GSEA) revealed that the radiation resistance group had the most gene sets enriched in altered immune response, such as TNF signaling pathway, when compared to the radiation sensitive group. Protein-protein interaction (PPI) network was carried out through the STRING database, and then five hub genes (CXCL10, IFIH1, DDX58, CXCL11, RSAD2) were screened by Cytoscape software. RT-PCR confirmed the expression of the above hub genes. ChIP-X Enrichment Analysis showed that STAT1 might be the transcription factor of the above hub genes. Considering that PD-L1 could be activated by STAT1 in a variety of tumors and ultimately lead to immune exhaustion, RT-PCR and Western blot verified the expression level of PD-L1. Results: Five hub genes (CXCL10, IFIH1, DDX58, CXCL11, RSAD2) were screened and verified to be highly expressed in radioresistance group, STAT1 might be the transcription factor of the above hub genes. Our study found that the expression level of PD-L1 was increased after radiotherapy resistance. Conclusion: Although immune system activation occurs followed by radiation resistance, we hypothesized that the upregulation of PD-L1 expression caused by STAT1 activation might be one of the mechanisms of radiotherapy resistance.

13.
Front Pharmacol ; 13: 870178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784745

RESUMO

The combination of immunotherapy with platinum-based chemotherapy has become the first-line treatment for patients with advanced non-small cell lung cancer (NSCLC) with negative driver gene mutations. However, finding an ideal chemotherapeutic regimen for immunotherapy and exploring the underlying mechanism have noticeably attracted clinicians' attention. In this study, we found that cisplatin induced ferroptosis of tumor cells, followed by N1 neutrophil polarization in the tumor microenvironment, which in turn remodeled the "cold" tumor to a "hot" one through enhancing T-cell infiltration and Th1 differentiation. Based on the important role of tumor ferroptosis in the immune-promoting effect of cisplatin, we noticed that the combination of a ferroptosis activator showed a synergistic effect with chemoimmunotherapy of epidermal growth factor receptor (EGFR)-mutant NSCLC, which would be an effective strategy to overcome immunotherapy resistance in NSCLC patients harboring driver mutations.

14.
J Agric Food Chem ; 70(12): 3852-3861, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35311281

RESUMO

5-Hydroxymethylfurfural (5-HMF) is a processing byproduct present in foods that are consumed daily by humans, and the diet is the principal route for human exposure to it. However, its adverse effects on gastric epithelial cells are not fully understood. Based on the half inhibitory concentration value, concentrations of HMF of 2, 4, 8, and 16 mM were selected for this study. After 5-HMF treatment for 24 h, the number of living cells decreased to 89.61 ± 0.48, 77.30 ± 0.57, 58.75 ± 0.36, and 19.61 ± 0.40% of the control, respectively. Apoptosis activated through both the death receptor and mitochondrial pathways was confirmed to be the primary mode of HMF-induced cell death. Further analysis revealed that the reactive oxygen species (ROS) levels in GES-1 cells increased 1.7-6.5 fold after exposure to 5-HMF. Moreover, the inhibition of ROS by N-acetylcysteine blocked HMF-induced apoptosis and cell proliferation suppression, indicating that oxidative stress was important in HMF-induced apoptosis. Besides, after 5-HMF treatment, the gene expressions of occludin and ZO-1 were reduced by 1.1-3.4 fold and 2.0-9.4 fold, respectively. The cell surface morphology and tight junction-related protein expression analysis also revealed the destructive effect of 5-HMF on tight junction integrity. Our research highlights a potential mechanism of HMF-induced toxicity in GES-1 cells and provides additional information on the health risks of 5-HMF exposure to the human gastric epithelium.


Assuntos
Estresse Oxidativo , Junções Íntimas , Apoptose , Células Epiteliais/metabolismo , Furaldeído/análogos & derivados , Humanos , Junções Íntimas/metabolismo
15.
Oxid Med Cell Longev ; 2022: 3080263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355868

RESUMO

Cisplatin-induced ototoxicity is one of the common side effects during its treatment and there are no effective measures to prevent it. Our study aimed to investigate the effect of ACSL4-catalyzed lipid peroxidation on cisplatin-induced hearing loss and its possible protective mechanisms. We used a variety of cisplatin ototoxicity models, including HEI-OC1 cell line, cochlear explants, and ET4 GFP+ zebrafish. After measuring the experimental concentrations of cisplatin by CCK8 assay and immunofluorescence, respectively, we examined the levels of lipid peroxidation by MDA content, 4-HNE content, and C11-BODIPY (581/591) probe. Then, we used two ferroptosis inhibitors, FER-1, and Vit-E to protect hair cells. We found that cisplatin significantly increased the levels of lipid peroxidation and that this process can be resisted by the ferroptosis inhibitors. Afterwards, we performed metabolomic assays on the cisplatin-treated hair cells. The metabolite levels were significantly altered in the experimental group compared to the control group, and the highest degree of change was observed in the glutathione metabolic pathway and the arachidonic acid metabolic pathway. Therefore, we screened the key enzymes on the arachidonic acid metabolic pathway in the hair cells after cisplatin treatment and found that ACSL4 had the greatest regulatory value. Further, we reduced the level of lipid peroxide in hair cells by specifically inhibiting the expression of ACSL4, which protected hair cells from cisplatin damage at source. In conclusion, the lipid peroxidation process regulated by ACSL4 may be an important factor contributing to the sensitivity of hair cells to cisplatin. Inhibition of ACSL4 expression may be an effective preventive measure against cisplatin ototoxicity.


Assuntos
Antineoplásicos , Ototoxicidade , Animais , Antineoplásicos/toxicidade , Catálise , Cisplatino/toxicidade , Humanos , Peroxidação de Lipídeos , Peixe-Zebra
16.
Front Immunol ; 13: 793855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350778

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory in joints. Invasive pannus is a characteristic pathological feature of RA. RA fibroblast-like synoviocytes (FLSs) are showed tumor-like biological characters that facilitate pannus generation. Importantly, it has been documented that extracellular vesicle (EVs) derived microRNAs have a vital role of angiogenesis in various immune inflammatory diseases. However, whether RA FLSs derived EVs can facilitate angiogenesis and the underlying mechanism is undefined. Herein, we aim to investigate the key role of RA FLSs derived EVs on angiogenesis in endothelial cells (ECs). We indicate that RA FLSs derived EVs promote ECs angiogenesis by enhancing migration and tube formation of ECs in vitro. Also, we confirm that RA FLSs derived EVs can significantly facilitate ECs angiogenesis with a matrigel angiogenesis mice model. In terms of the mechanisms, both RNAs and proteins in EVs play roles in promoting ECs angiogenesis, but the RNA parts are more fundamental in this process. By combining microRNA sequencing and qPCR results, miR-1972 is identified to facilitate ECs angiogenesis. The blockage of miR-1972 significantly abrogated the angiogenesis stimulative ability of RA FLSs derived EVs in ECs, while the overexpression of miR-1972 reversed the effect in ECs. Specifically, the p53 level is decreased, and the phosphorylated mTOR is upregulated in miR-1972 overexpressed ECs, indicating that miR-1972 expedites angiogenesis through p53/mTOR pathway. Collectively, RA FLSs derived EVs can promote ECs angiogenesis via miR-1972 targeted p53/mTOR signaling, targeting on RA FLSs derived EVs or miR-1972 provides a promising strategy for the treatment of patients with RA.


Assuntos
Artrite Reumatoide , Vesículas Extracelulares , MicroRNAs , Sinoviócitos , Animais , Artrite Reumatoide/metabolismo , Proliferação de Células/genética , Células Cultivadas , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Sinoviócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
17.
Hortic Res ; 92022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35031799

RESUMO

Caffeine is an important functional substance and is abundant in tea plant, but little is known about how its biosynthesis is regulated by transcription factors. In this study, the NAC-like transcription factor-encoding gene CsNAC7, which is involved in caffeine synthesis, was isolated from a Yinghong 9 cDNA library using a yeast one-hybrid assay; this gene comprises 1371 bp nucleotides and is predicted to encode 456 amino acids. The expression of CsNAC7 at the transcriptional level in tea shoots shared a similar pattern with that of the caffeine synthase gene yhNMT1 in the spring and summer, and its expressed protein was localized in the nucleus. Assays of gene activity showed that CsNAC7 has self-activation activity in yeast, that the active region is at the N-terminus, and that the transient expression of CsNAC7 could significantly promote the expression of yhNMT1 in tobacco leaves. In addition, overexpression or silencing of CsNAC7 significantly increased or decreased the expression of yhNMT1 and the accumulation of caffeine in transgenic tea calli, respectively. Our data suggest that the isolated transcription factor CsNAC7 positively regulates the caffeine synthase gene yhNMT1 and promotes caffeine accumulation in tea plant.

18.
Cancer Res ; 82(4): 556-570, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34965935

RESUMO

Aberrant activation of NFκB orchestrates a critical role in tumor carcinogenesis; however, the regulatory mechanisms underlying this activation are not fully understood. Here we report that a novel long noncoding RNA (lncRNA) Uc003xsl.1 is highly expressed in triple-negative breast cancer (TNBC) and correlates with poor outcomes in patients with TNBC. Uc003xsl.1 directly bound nuclear transcriptional factor NFκB-repressing factor (NKRF), subsequently preventing NKRF from binding to a specific negative regulatory element in the promoter of the NFκB-responsive gene IL8 and abolishing the negative regulation of NKRF on NFκB-mediated transcription of IL8. Activation of the NFκB/IL8 axis promoted the progression of TNBC. Trop2-based antibody-drug conjugates have been applied in clinical trials in TNBC. In this study, a Trop2-targeting, redox-responsive nanoparticle was developed to systematically deliver Uc003xsl.1 siRNA to TNBC cells in vivo, which reduced Uc003xsl.1 expression and suppressed TNBC tumor growth and metastasis. Therefore, targeting Uc003xsl.1 to suppress the NFκB/IL8 axis represents a promising therapeutic strategy for TNBC treatment. SIGNIFICANCE: These findings identify an epigenetic-driven NFκB/IL8 cascade initiated by a lncRNA, whose aberrant activation contributes to tumor metastasis and poor survival in patients with triple-negative breast cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Interleucina-8/genética , NF-kappa B/genética , RNA Longo não Codificante/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Animais , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Interleucina-8/metabolismo , Camundongos Nus , Pessoa de Meia-Idade , NF-kappa B/metabolismo , RNA-Seq/métodos , Terapêutica com RNAi/métodos , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Cell Insight ; 1(1): 100004, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37192988

RESUMO

Recent findings have revealed that human genome encodes tens of thousands long noncoding RNAs (lncRNAs), which play essential roles in broad spectrum of cellular processes. Emerging evidence has uncovered a new archetype of lncRNAs which functions as key components of cell signaling pathways. In this review, we describe how lncRNAs interact with proteins to regulate cancer intracellular signaling and intercellular signaling in the tumor microenvironment (TME), which enable cancer cells to acquire malignant hallmarks. Moreover, besides lncRNAs, non-coding nucleic acids, such as neutrophil extracellular trap-DNA (NET-DNA), endogenous DNA and RNA, can act as signal molecules to connect cells from distant organs and trigger systemic responses in the macroenvironment of tumor-bearing hosts. Overall, the widely observed dysregulation of non-coding nucleic acids in cancer alters signaling networks in the tumor ecosystem, providing a rich resource for the identification of cancer biomarkers and therapeutic targets.

20.
Fungal Biol Biotechnol ; 8(1): 22, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952645

RESUMO

BACKGROUND: Life-threatening invasive fungal infections are treated with antifungal drugs such as Amphotericin B (AmB) loaded liposomes. Our goal herein was to show that targeting liposomal AmB to fungal cells with the C-type lectin pathogen recognition receptor DC-SIGN improves antifungal activity. DC-SIGN binds variously crosslinked mannose-rich and fucosylated glycans and lipomannans that are expressed by helminth, protist, fungal, bacterial and viral pathogens including three of the most life-threatening fungi, Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. Ligand recognition by human DC-SIGN is provided by a carbohydrate recognition domain (CRD) linked to the membrane transit and signaling sequences. Different combinations of the eight neck repeats (NR1 to NR8) expressed in different protein isoforms may alter the orientation of the CRD to enhance its binding to different glycans. RESULTS: We prepared two recombinant isoforms combining the CRD with NR1 and NR2 in isoform DCS12 and with NR7 and NR8 in isoform DCS78 and coupled them to a lipid carrier. These constructs were inserted into the membrane of pegylated AmB loaded liposomes AmB-LLs to produce DCS12-AmB-LLs and DCS78-AmB-LLs. Relative to AmB-LLs and Bovine Serum Albumin coated BSA-AmB-LLs, DCS12-AmB-LLs and DCS78-AmB-LLs bound more efficiently to the exopolysaccharide matrices produced by A. fumigatus, C. albicans and C. neoformans in vitro, with DCS12-AmB-LLs performing better than DCS78-AmB-LLs. DCS12-AmB-LLs inhibited and/or killed all three species in vitro significantly better than AmB-LLs or BSA-AmB-LLs. In mouse models of invasive candidiasis and pulmonary aspergillosis, one low dose of DCS12-AmB-LLs significantly reduced the fungal burden in the kidneys and lungs, respectively, several-fold relative to AmB-LLs. CONCLUSIONS: DC-SIGN's CRD specifically targeted antifungal liposomes to three highly evolutionarily diverse pathogenic fungi and enhanced the antifungal efficacy of liposomal AmB both in vitro and in vivo. Targeting significantly reduced the effective dose of antifungal drug, which may reduce drug toxicity, be effective in overcoming dose dependent drug resistance, and more effectively kill persister cells. In addition to fungi, DC-SIGN targeting of liposomal packaged anti-infectives have the potential to alter treatment paradigms for a wide variety of pathogens from different kingdoms including protozoans, helminths, bacteria, and viruses which express its cognate ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA